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Ionizing Color in the Quark Gluon Plasma
1. Quantum ChromoDynamics (QCD):

How the coupling constant in QCD “runs”: asymptotic freedom
Ionizing Color Charge in a Quark Gluon Plasma at a temperature Tc.

2. Debye screening and the Random Phase Approximation in Plasmas,
         Electron Positron and Quark Gluon
         In QCD: how to go from T = ∞ down to ~ 3  Tc.  But not down to Tc!

3. Strongly Coupled Plasmas:
     Supersymmety vs. Partial Color Ionization in a “semi” Quark Gluon Plasma

4. Confinement: from 3 Colors in QCD to a 3-state Potts Model
         Quark Gluon Plasma as the broken phase of a Potts model.

5. Dynamics of the semi Quark Gluon Plasma: “Bleaching” Color near Tc

6. New Phase Diagram for QCD
     “Quarkyonic” Matter and their Chiral Spirals



QCD, 
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QCD, 
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                              Color                    Quark Gluon 



Electrons & Photons in QED

Quantum ElectroDynamics, QED:  electrons ψ, photons Aμ, coupling constant “e”

Local U(1) symmetry - arbitrary changes in the phase of ψ, θ(x):

Gauge invariance:  
use covariant, instead
of ordinary derivative:

For massless electrons, Lagrangian

QED: photon field strength gauge invariant

          Only interaction between a photon and electrons:

Fµν = ∂µAν − ∂νAµ =
1
−ie

[Dµ, Dν ]

Dµ = ∂µ − ieAµ → U†DµU

U = eieθ : ψ → Uψ ; Aµ → Aµ − ∂µθ

L = ψ γµDµ ψ +
1
4

F 2
µν



Quantum ChromoDynamics, QCD:  quarks ψ and gluons Aμ , coupling const. “g”
“Strong” interactions: protons, neutrons, pions +... = quarks & gluons.

Local SU(3) symmetry: three “colors”, θ ⇒ 3 by 3 (traceless) matrix. 
Quarks: complex valued, 3 component column vector.  3 colors of quarks.
Gluons: real, traceless 3 by 3 matrix.    32 - 1 = 8 types of gluons.  

Lagrangian just like QED, but Dµ and Gµν gauge covariant:  Gµν → U† Gµν U.
Local SU(N) symmetry: N quarks & N2 - 1 gluons: gluons dominate at large N.
Interactions: quarks with gluons, and gluons with one another:

Quarks and Gluons in QCD

L = ψγµDµψ +
1
2
trG2

µν ; Dµ = ∂µ − igAµ ; Gµν =
1
−ig

[Dµ, Dν ]



Asymptotic Freedom in QCD

↑ 1 GeV

αs ↑ 

log(p)→

Classically, QCD has no mass scale, only one dimensionless coupling, 
which “runs” with momentum.
Asymptotic freedom: coupling vanishes 
at infinite momenta 

(Nobel: Gross, Politzer, & Wilczek, 2004) 

When mass scale > 1 GeV, pert. thy ok.
(1 GeV ~ mass proton), αs < 0.3.  Experiment ⇒ 

Long distances difficult: “confinement”.
Short distances: ~ free field theory!

Theory uniquely specified by the value of the 
coupling constant at one momentum scale.

αs(p) =
g2

4π
≈ 2π/9

log(p)
+ . . . ; p→∞



Ionizing Color Charge in a Quark Gluon Plasma
As temperature T → ∞, by asymptotic freedom, g2(T) → 0, so

ideal gas of eight gluons & quarks.  Pressure:

pideal(T ) =

(

8 +
7

8
· 18

)

π2

45
T 4

At high T, familiar plasma physics: Debye screening.  
Corrections to pressure, etc, power series in √g2(T) (not g2(T) )

Low temperature: color is not ionized, “confinement”.  Hadronic “liquid”.

Expect “deconfining” transition at T=Tc : i.e., color ionized above Tc.

Large increase in the pressure at Tc:  consider large N = # colors, 3 in QCD

      Plasma phase: pressure ~ N2 from ionized (deconfined) gluons.

      Hadronic “liquid”: pressure ~ 1, since color can’t ionize, confined hadrons.



 Ionizing Color on a Lattice

Discretize QCD on lattice, with spacing “a”.   Since QCD has only one
     dimensionless coupling constant, results unique as “a” →  0.

Cheng et al, arXiv:0719.0354.  e = energy density, p = pressure. 
Rapid approach to (nearly) ideal gas, where e = 3p, by ~ 3 Tc .

Ionize color at low Tc ~ 200 MeV,
~ 1/5 mproton = 0.2 * 1013 oK!

No true phase transition, crossover.

But huge increase in pressure at Tc.

Results similar for more colors:
    large increase in pressure due to

ionization of color
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Debye Screening and the 
Random Phase Approximation in Plasmas,

Electron Positron & Quark Gluon 



Debye Screening in a Coulombic Plasma
Ordinary matter (gas, liquid, solid) composed of electrically neutral objects.
“Fourth” state: plasma.  No net charge, but charges free to move about.

Consider interaction with a fixed, test charge, +.  

Ordinary matter: without ionization, interaction with test charge is the usual
Coulomb interaction, ~ e2/r.  

Plasma: Coulomb interactions with test charge, +, shielded by free charges, − +, 
over distance 1/mDebye,  mDebye = Debye mass.  Density of plasma = “n”:
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Random Phase Approximation (RPA)
Landau & Lifschitz, Vol. 10, “Physical Kinetics”, Lifshitz & Pitaevskii, pg 132.



Photons in a Electron Positron Plasma 
Hot QED: T > 2 melectron ~ 1010 oK.  
E.g.: γ-ray bursters...  Exawatt lasers @ 1018W: ExtremeLaserInfrastructure (ELI)
Photon self energy gives Random Phase Approximation (RPA).  Density n ~ T3:

Loop momenta red: “hard” ~ T.  Extneral momenta ∂μ, blue “soft” ~ mD ~ e T .

Debye screening of static electric, but not static magnetic fields.
“Landau damping”: scatter off of particles in the thermal bath, ω < p.
Time dependent electric and magnetic fields screened by electric charges:
            Photon “mass”: just index of refraction < 1. 

In QED, field strength Fµν gauge invariant, so LγRPA is gauge invariant.

m2
D =

e2 n

T
=

e2 T 2

9

Lγ
RPA =

3
4

m2
D

∫

k̂2=1

dΩk̂

4π
Fµα KαKβ

−(∂ · K)2
Fµβ

∣∣∣∣
Kµ=(i,k̂) ,K2=0



Electrons in a Electron Positron Plasma
In EPP, also need electron self energy, like that of photons: thermal “mass” ~ e T:

m2
elec =

1
8

e2T 2

Like electron “mass”, does not violate chiral symmetry of massless quarks.
          RPA: add self energies to original Lagrangian:

But: electrons are not gauge invariant, so neither is Lel, selfRPA - ?  

Lel,self
RPA = m2

elec

∫

k̂2=1

dΩk̂

4π
ψ

γµKµ

K · ∂ ψ

∣∣∣∣
Kµ=(i,k̂) , K2=0



Complete RPA in a Electron Positron Plasma
Gauge invariance: just replace 
ordinary derivative, ∂μ , 
with covariant  derivative, Dμ :

Lel
RPA = m2

elec

∫
dΩk̂

4π
ψ

γµKµ

K · D ψ

Diagramatically, represents an infinite series of vertices between 
an electron, positron, and any number of photons:

Generalized RPA approximation:
Effective propagators as before,
plus infinite series of 
effective vertices: 
photon and e+e-,
two photons and e+e-, etc.
All built up by using covariant,
instead of ordinary, derivative.

+ +

+

+...

+...



RPA in a Quark Gluon Plasma

In weak coupling, g < 1, results in QCD very like QED!  Quarks:

Lqk
RPA = m2

qk

∫
dΩk̂

4π
ψ

γµKµ

K · D ψ m2
qk =

1
6

g2T 2

Gluons: make gauge invariant LRPA 
by replacing Fµν →Gµν , and ∂µ with Dµ!

Lgluon
RPA =

3
2

m2
D

∫
dΩk̂

4π
tr

(
Gµα KαKβ

−(K · D)2
Gµβ

)

m2
D =

1
3

g2T 2

RPA in hot QCD = “Hard thermal loops”.  
Braaten & RDP + Taylor & Wong + ...‘89-92.

Need effective propagators plus effective vertices.  Can compute efficiently.



Diagrams for a Quark Gluon RPA

Diagrams included start as...

RPA necessary to treat “soft” momenta, ~ g T, consistently in weak coupling.

Why is the RPA gauge invariant?  Simplest derivation: kinetic theory.
Leading order = only forward scattering processes,  are gauge invariant.  

Not true beyond leading order: consistent expansion to all orders?

+...



Andersen &
Strickland,
hep-ph/0404164

p
pideal

↑

QCD: Naive Perturbation Theory fails badly at T ≠ 0
T=0: perturbation thy. in αs = g2/4π.   Works well for momenta > 1 GeV, αs < 0.3.

T ≠ 0: Debye screening ⇒ expansion in √αs .  
For pressure, perturbation thy. fails at very high temperature, ~ 107 GeV!

↑ αs ∼ 0.3

g(2πT )→
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Stefan-Boltzmann law
O(g6ln 1-)g   + fitted O(g6)

full EQCD + fitted O(g6)
4d lattice data

Hietanen, Kajantie,
Laine, Rummukainen,
Schroder, 0811.4664:
compute perturbatively
to ~ g6, 4 loop order.

T/Tc→

p/T4↑

←lattice

← RPA resummed
     pressure

↓

QCD: Resummed RPA Pressure works down to ~ 3 Tc

Resum pressure using (generalized) RPA: works to ~ 3 Tc, but not below.  

Strong decrease in the pressure near from ~ 3 Tc down to Tc: new physics.

Tc ↑



Strongly Coupled Plasmas:
Supersymmetry vs.

Partial Color Ionization in the “semi” Quark Gluon Plasma



Plasmas in QED
Plasma of density “n”.  
Dimensionless coupling:
ΓD = potential/kinetic energy
# particles in “Debye sphere”, radius 1/mDebye , = 1/ΓD

Dilute plasma, ΓD < 1: many particles in Debye sphere.  
Dense plasma, ΓD ≥ 1: few particles in Debye sphere.  Strongly coupled plasma.                                                                                        

⇐ Prof. Jacoby

← Γ = #Γ2/3
D = 1

105 eV→

QGP:
109 eV Density→

T ↑
⇐ High density:
     “strongly coupled”
     plasma

m2
D =

e2 n

T
; ΓD =

e2

mDT



Supersymmetry & AdS/CFT Plasma

Density in QCD is n ~ T3, so ΓD ~ g3.  A strongly coupled plasma?

Maldacena, hep-th/9711200:  N = 4 supersymmetry for SU(N) gauge group
“Most” supersymmetric: gluons, gluinos, & Higgs, no quarks.
One dimensionless coupling, αs,  but does not run!  
Can compute in limit of infinite coupling, infinite # of colors.  

Anti deSitter/Conformal Field Theory, AdS/CFT.  

Many results from AdS/CFT: 
dominant paradigm

Conformal: pressure/ideal gas is 
    constant with T,  > 3/4!  

How to explain small pressure near Tc?



Ionizing Color in the QGP: Complete and Partial
T > 3-4 Tc: complete ionization of color, perturbative QGP. RPA pressure ~ ideal.

                                                              
T: Tc to ~ 3-4 Tc: partial ionization of color.  “Semi” QGP.  Pressure intermediate.

T < Tc: no ionization of color, confined.  Small pressure.

←  Confined →←      “Semi”-QGP     →←Complete QGP →   

←Tc
T→    0
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Confinement:
from 3 Colors to a 3-state Potts Model.
Polyakov Loops and Color Ionization.



Potts Model “hidden” in QCD
Let Uc = gauge transf. = constant phase.
Uc ∈ SU(3), so det Uc = 1. 
Uc must be one of three roots of unity:

Under Uc, gluons invariant:

but quarks are not.  

Uc =
(
e2πi/3

)j
, j = 0, 1, 2

ψ → e2πi/3 ψ

Aµ → e−2πi/3 Aµ e2πi/3 = Aµ

‘t Hooft: “hidden” 3-state Potts model, or Z(3) spin, in SU(3) color 

Measure using (Wegner-)Wilson loop.  At T ≠ 0, Polyakov loop:

τ = imaginary time: 0 → 1/T.  
                     Polyakov loop measures Z(3) “spin”.

! =
1
3

tr exp

(
ig

∫ 1/T

0
A0 dτ

)
→ e2πi/3 !



Polyakov Loop as a Potts Model Spin

Purely gluonic plasma, no quarks: asymptotic freedom =>
hot gluons nearly ideal gas, g2(T) → 0 as T → ∞.

Fluctuations in A0 small, so Polyakov loop is near one, 
times exp(2 π i/3)!  Three degenerate vacua: 3 state Potts model
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A. Kurkela, unpublished



Potts Magnetization vs Polyakov Loop

Ordinary magnets:
symmetry (spontaneously) broken at low T,
restored above Tc.  
For first order transition, magnetization:

QGP: Z(3) symmetry broken at high T, restored at low T.   

<loop> = exp(-Ftest quark/T)
        = 0 when T < Tc:

Confinement = no Z(3) magnetization;
color cannot be ionized in the confined phase.

Polyakov loop provides gauge invariant measure
of color ionization.

T→ 

Tc ↑ 

<s>↑

T→ 

Tc ↑ 

<loop>↑



Polykov Loop from Lattice: pure Glue, no Quarks
Lattice: (renormalized) Polyakov loop.  Looks like pressure:
Semi-QGP: <loop> < 1, T: Tc  → 4 Tc Complete QGP: <loop> ~ 1, T > 4 Tc

Effective theory for Polyakov loop(s)?  
RDP & ...: hep-ph/0006205, 0311223, 0410294, 0505256, 0512245, 0608242 + ...

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  4  6  8  10  12

L3

r

T/Tc

-
direct renormalization

QQ renormalization

T → ←Tc  

←Confined→ ←SemiQGP→ ←  Complete QGP  →   

<loop>↑
← ~ 4 Tc  

←1.0

Lattice: 
Gupta, 
Hubner, 
Kaczmarek, 
0711.2251

← ~ 0.4

T=0→ 



Polyakov Loop from Lattice: Glue plus Quarks
Quarks ~ background Z(3) field. Lattice: quarks do not wash out loop in QCD!
Semi-QGP: <loop> nonzero above 0.8 Tc (< Tc !), < 1 up to ~ 2-3 Tc .  
Hadronic phase below semi-QGP, T < 0.8 Tc .  Complete QGP above , T > 2-3 Tc 
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Dynamics of the semi Quark Gluon Plasma:
Bleaching Color near Tc



Interface Tension between two Z(3) Phases
In pure SU(3) (no quarks), consider a box which is long in the z-direction.
Vacuum at each end, but different Z(3) vacua.  Domain wall forms.

Action proportional to transverse area times interface tension:
Tunneling between Z(3) vacua ↑ as T ↓.

What matters are matrix degrees of freedom.

Compute by taking z-dependent A0 field: 
RDP+... hep-ph/9205231.

z

Acl
0 (z) =

2πT

3g
q(z)




1 0 0
0 1 0
0 0 −2





σinter =
8π2

9
T 3

√
g2



Matrix Model for the QGP

Polyakov loop = 1/3 trace of SU(3) matrix:
   L = thermal Wilson line

L = gauge variant, eigenvalues are gauge invariant.  
      L† L = 1, so eigenvalues phases, = exp(i qa), a = 1,2,3; Σa qa = 0, mod 2π 

Deconfinement is like a random matrix model (RMM):
complete QGP: all phases identical.  E.g., all qa = 0.
confined phase: uniform distribution over all Z(3) vacua: 

                                           qa = 0, ± 2π/3
semi-QGP: non-uniform distribution of eigenvalues. 

Small volume: effective Lagrangian Vandermonde determinant, like RMM.
Large volume: no simple form - yet - for effective Lagrangian.
Hints from lattice: Dumitru & Smith, 0711.0868, Velytsky, 0805.4450

Assume a given eigenvalue distribution: physics?

L = exp

(
ig

∫ 1/T

0
A0 dτ

)



Shear Viscosity in the semi-QGP

Semi-QGP: semi-classical expansion about background field A0cl = Q/g.
Q = diagonal matrix, imaginary chemical potential for color.  .

η

T 3
=

#
g4 log(c/g)

|"|2 , "→ 0
     Near Tc, as <loop> → 0,  
     perturbative η times <loop>2:
     Hidaka & RDP, ’08,’09....

η

s
=

1
4π

Shear viscosity, η: in kinetic theory, η ~ 1/cross section.

AdS/CFT: Kovtun, Son & Starinets hep-th/0405231.
Conjectured lower bound.  (s = entropy density)
Reasonable, since computed for infinite coupling in SUSY QCD.

     η = (source term ~ <loop>2)2/(cross section ~ <loop>2) ~ <loop>2

     “Bleaching” of color: probability to produce color particles ~ <loop>.
     Of course!  If color can’t be ionized, you can’t produce colored particles.



←Perturbative QGP

← semi-QGP
AdS-CFT↓

T/Tc→

Bleaching Shear Viscosity in the semi-QGP



AdS/CFT vs. semi-QGP @ LHC
Collisions of heavy ions at RHIC (Brookhaven, AuAu) and LHC (CERN, PbPb):

Quark Gluon Plasma?

RHIC: center of mass energy 200 GeV.  
    Shear viscosity appears very small, η/s near 1/4π

LHC: > 2010, center of mass energy 5500 GeV.   
  pressure ~ T4, so perhaps LHC a factor of two higher in temperature than RHIC?

AdS/CFT: if RHIC in conformal regime, so is the LHC.
     η/s small at RHIC, stays small at the LHC.  LHC very similar to RHIC.

Semi-QGP: Assume RHIC is in the semi-QGP, near Tc.  η/s small.
                   LHC starts in the Complete QGP, well above Tc.  η/s large.
                   Should be numerous differences between RHIC and LHC:
                   “bleaching” of color at RHIC, not (initially) at the LHC.

So: is LHC ≈ RHIC (AdS/CFT), or is LHC ≠ RHIC (Semi-QGP)?



Towards NARPA:
a Non-Abelian Random Phase Approximation



New Phase Diagram for QCD:
“Quarkyonic” Matter and their Chiral Spirals



 

QCD Phase Diagram: 1975

ρBaryon ↑

Cabibbo and Parisi ‘75: Transition to “unconfined” phase.  One transition.
But QCD has two (possible) transitions: deconfinement and chiral symmetry.

T →



QCD Phase Diagram: 2007

T↑ μB→

Lattice: at T ≠ 0, zero quark density, μ = 0, one “transition”, crossover.  
Rajagopal, Stephanov, & Shuryak ’99: critical endpoint at μ ≠ 0?

≠



μB→

T↑

QCD Phase Diagram: 2009

L. McLerran & RDP 0706.2191; 0803.0279; & et al... 0909....; & T. Kojo 0909...
Large Nc suggests: deconfining and chiral phase transitions split at μ ≠ 0.
    “Quark-yonic” matter: quark Fermi sea + confined (bary-onic) Fermi surface
Implies Triple Point in T-μ plane. Related to experiment @ SPS, RHIC?



“Chiral Spirals” in Quarkyonic Matter

          

RDP et al 0909...: using confining potential, find:
 crystalline structure, with chiral density wave for (helicity) condensate:

         

←
〈ψψ〉

→

↑

↓
〈ψγ0γ1ψ〉

〈ψψ〉2 + 〈ψγ0γ1ψ〉2 = const

Like, but not identical, to pion condensation, which rotates into 

Directly analogous to polarons in polyacytelene. Thies, hep-th/0601049

Chiral Gross-Neveu model in 1+1 dimensions: Basar, Thies, & Dunne, 0903.1868

〈ψψ〉& 〈ψγ5ψ〉



All in all...




